Melhores trituradores elétricos de jardim Reino Unido 2023
Mar 06, 2023Os compradores compartilharam suas maiores compras de dinheiro com pneus canadenses e os esbanjamentos são selvagens
Mar 08, 2023Aparador de árvore morre após cair em picador de madeira, diz polícia
Mar 10, 2023Os melhores picadores de madeira de 2023
Mar 12, 2023Setor de mineração brasileiro chama a atenção em meio à transição energética
Mar 14, 2023Misture e combine: como um metanogênico cria seu o
Como um micróbio metanogênico remonta uma via metabólica peça por peça para transformar o sulfato em um bloco de construção celular
Instituto Max Planck de Microbiologia Marinha
imagem: A estudante de doutorado Marion Jespersen trabalha em um fermentador no qual M. thermolithotrophicus cresce exclusivamente com sulfato como fonte de enxofre.Veja mais
Crédito: Tristan Wagner / Instituto Max Planck de Microbiologia Marinha
Enxofre, um bloco de construção essencial da vida
O enxofre é um elemento fundamental da vida e todos os organismos precisam dele para sintetizar materiais celulares. Autotróficos, como plantas e algas, adquirem enxofre convertendo sulfato em sulfeto, que pode ser incorporado à biomassa. No entanto, esse processo requer muita energia e produz intermediários e subprodutos nocivos que precisam ser transformados imediatamente. Como resultado, acreditava-se anteriormente que micróbios conhecidos como metanogênicos, que geralmente têm pouca energia, seriam incapazes de converter sulfato em sulfeto. Portanto, assumiu-se que esses micróbios, que produzem metade do metano do mundo, dependem de outras formas de enxofre, como o sulfeto.
Um sulfato assimilador de metanogênio?
Esse dogma foi quebrado em 1986 com a descoberta do metanogênico Methanothermococcus thermolithotrophicus, crescendo em sulfato como única fonte de enxofre. Como isso é possível, considerando os custos energéticos e intermediários tóxicos? Por que é o único metanogênico que parece ser capaz de crescer nesta espécie de enxofre? Este organismo usa truques químicos ou uma estratégia ainda desconhecida para permitir a assimilação de sulfato? Marion Jespersen e Tristan Wagner, do Instituto Max Planck de Microbiologia Marinha, agora encontraram respostas para essas perguntas e as publicaram na revista Nature Microbiology.
O primeiro desafio que os pesquisadores encontraram foi fazer com que o micróbio crescesse na nova fonte de enxofre. "Quando comecei meu doutorado, realmente tive que convencer M. thermolithotrophicus a comer sulfato em vez de sulfeto", diz Marion Jespersen. "Mas depois de otimizar o meio, o Methanothermococcus tornou-se um profissional em crescer em sulfato, com densidades celulares comparáveis às do crescimento em sulfeto."
"As coisas ficaram realmente emocionantes quando medimos o desaparecimento do sulfato à medida que o organismo crescia. Foi quando pudemos realmente provar que o metanogênio converte esse substrato." Isso permitiu que os pesquisadores cultivassem M. thermolithotrophicus com segurança em biorreatores em larga escala, já que não dependiam mais do gás sulfídrico tóxico e explosivo para crescer. "Ele nos forneceu biomassa suficiente para estudar esse organismo fascinante", explica Jespersen. Agora os pesquisadores estavam prontos para aprofundar os detalhes dos processos subjacentes.
A primeira dissecação molecular da via de assimilação do sulfato
Para entender os mecanismos moleculares da assimilação do sulfato, os cientistas analisaram o genoma do M. thermolithotrophicus. Eles encontraram cinco genes que tinham o potencial de codificar enzimas associadas à redução de sulfato. "Conseguimos caracterizar cada uma dessas enzimas e, portanto, exploramos o caminho completo. Um verdadeiro tour de force quando você pensa sobre sua complexidade", diz Tristan Wagner, chefe do Max Planck Research Group Microbial Metabolism.
Ao caracterizar as enzimas uma a uma, os cientistas montaram a primeira via de assimilação de sulfato de um metanogênio. Enquanto as duas primeiras enzimas da via são bem conhecidas e ocorrem em muitos micróbios e plantas, as próximas enzimas eram de um novo tipo. "Ficamos surpresos ao ver que parece que M. thermolithotrophicus sequestrou uma enzima de um organismo redutor de sulfato dissimilatório e a modificou levemente para atender às suas próprias necessidades", diz Jespersen. Enquanto alguns micróbios assimilam o sulfato como um bloco de construção celular, outros o usam para obter energia em um processo dissimilatório – como os humanos fazem ao respirar oxigênio. Os micróbios que realizam a redução dissimilatória de sulfato empregam um conjunto diferente de enzimas para fazê-lo. O metanogênio aqui estudado converteu uma dessas enzimas dissimilatórias em uma assimilatória. "Uma estratégia simples, mas altamente eficaz e provavelmente a razão pela qual esse metanogênio é capaz de crescer em sulfato. Até agora, essa enzima específica só foi encontrada em M. thermolithotrophicus e em nenhum outro metanogênico", explica Jespersen.